Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Biological nitrogen fixation is the conversion of dinitrogen (N2) gas into bioavailable nitrogen by microorganisms with consequences for primary production, ecosystem function, and global climate. Here we present a compiled dataset of 4793 nitrogen fixation (N2-fixation) rates measured in the water column and benthos of inland and coastal systems via the acetylene reduction assay, 15N2 labeling, or N2/Ar technique. While the data are distributed across seven continents, most observations (88%) are from the northern hemisphere. 15N2 labeling accounted for 67% of water column measurements, while the acetylene reduction assay accounted for 81% of benthic N2-fixation observations. Dataset median area-, volume-, and mass-normalized N2-fixation rates are 7.1 μmol N2-N m−2 h−1, 2.3 × 10−4 μmol N2-N L−1 h−1, and 4.8 × 10−4 μmol N2-N g−1 h−1, respectively. This dataset will facilitate future efforts to study and scale N2-fixation contributions across inland and coastal aquatic environments.more » « lessFree, publicly-accessible full text available January 23, 2026
- 
            Sustainable aquaculture includes the aquaculture of non-fed crops that provide ecosystem services including nutrient extraction and water quality improvement. While shellfish are the most farmed sustainable aquaculture crops in the USA, shellfish farmers in the northeastern US have an interest in diversifying their crops and incorporating seaweeds into their farms. In this study, we worked with oyster farmers to investigate the potential for farming sugar kelp, Saccharina latissima , across different environmental regimes in coastal Rhode Island USA. Kelp seed spools were outplanted at two time points in the fall/winter of 2017 and 2018 at four sites and cultivated until harvest the following spring. Kelp performance (length, width, yield), tissue content, and nutrient extraction were determined for each line in each year; oyster growth was also measured monthly for one year at each site. We found that kelp could successfully grow in both shallow coastal lagoons and estuarine sites, although the timing of planting and placement of sites was important. Lines that were planted earlier (as soon as water temperatures<15°C) grew longer and yielded more biomass at harvest; overall, kelp blade yield ranged from 0.36 ± 0.01 to 11.26 ± 2.18 kg/m long line. We report little variation in the tissue quality (C:N) of kelp among sites, but differences in biomass production led to differences in nutrient extraction, which ranged from 0.28 ± 0.04 to 16.35 ± 4.26 g nitrogen/m long line and 8.93 ± 0.35 to 286.30 ± 74.66 g carbon/m long line. We found extensive variability in kelp growth within and between lines and between years, suggesting that crop consistency is a challenge for kelp farmers in the region. Our results suggest that, as there is a lower barrier in terms of permitting (versus starting a new aquaculture farm), it may be a worthwhile investment to add sugar kelp to existing oyster farms, provided they have suitable conditions. At current market rates of US$0.88-$3.30 per kg, farmers in southern New England have the potential to earn US$2,229 per 60 m longline. While seaweed aquaculture is growing, considerable barriers still exist that prevent wide-scale kelp aquaculture adoption by existing aquafarmers.more » « less
- 
            Biological nitrogen fixation converts inert di-nitrogen gas into bioavailable nitrogen and can be an important source of bioavailable nitrogen to organisms. This dataset synthesizes the aquatic nitrogen fixation rate measurements across inland and coastal waters. Data were derived from papers and datasets published by April 2022 and include rates measured using the acetylene reduction assay (ARA), 15N2 labeling, or the N2/Ar technique. The dataset is comprised of 4793 nitrogen fixation rates measurements from 267 studies, and is structured into four tables: 1) a reference table with sources from which data were extracted, 2) a rates table with nitrogen fixation rates that includes habitat, substrate, geographic coordinates, and method of measuring N2 fixation rates, 3) a table with supporting environmental and chemical data for a subset of the rate measurements when data were available, and 4) a data dictionary with definitions for each variable in each data table. This dataset was compiled and curated by the NSF-funded Aquatic Nitrogen Fixation Research Coordination Network (award number 2015825).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
